data visualization Tag Archives - General Assembly Blog

5 Key Excel Skills You Can Learn in Minutes

By

Since it was created in 1985, Excel has practically become synonymous with data itself, and still is many years later. Spend a few minutes with our expert instructor in the videos below to learn the kinds of Excel tools that can help you be your own analyst—and make smarter decisions with data. 

How to Create an Excel Bar Chart

Bar charts are an important visual tool that can help express your data over time and tell a story in a visually appealing and digestible way. Learn more in our 2-minute lesson below:

How To Create an Excel Pivot Table

Pivot tables allow you to effectively summarize and highlight the importance of your data sets. They are an important presentation tool and can help you simplify your data. Learn more in our 3-minute lesson below:

How To Create a Histogram in Excel

Histograms provide a visual representation of variations within your data and can help display degrees of difference in an impactful way. Learn more in our 2.5-minute lesson below:

How To Create a Pie Chart in Excel

Pie charts can express percentages of a whole and represents a set period of time and can be helpful to show differences among a handful of categories. Unlike bar charts, it does not express changes over time. Learn more in our 2.5-minute lesson below:

How To Create a VLookup in Excel

A VLookup (vertical lookup) can help you lookup data that is organized vertically. It is useful in helping you spot trends and find important pieces of data that can be difficult to locate in large data sets. Learn more in our 2.5-minute lesson below:

View Upcoming Data Workshops

A Beginner’s Guide To Tableau

By

Featuring Insights From Iun Chen & Vish Srivastava

Read: 2 Minutes

Tableau is a powerful data analysis and data visualization tool that anyone can use. It can be used by beginners to create simple charts and by advanced practitioners to solve complex business problems. It is user-friendly, easy to learn quickly, and includes a portfolio of business intelligence tools with the potential to give a wide range of roles the advantage of professionally analyzing data.

Simply put, if you can present data in a clear, compelling format, you gain a competitive advantage in today’s data-driven marketplace.

“Tableau enables you to quickly connect disparate data sources and utilize a drag-and-drop interface to analyze data and create dashboards,” says Vish Srivastava, who leads our Data Visualization & Intro to Tableau workshop. As a product leader at Evidation Health, he relies on Tableau to turn around fast data analysis. “For example, product teams use it to analyze user growth and analytics, BizOps teams use it to analyze operational data, and sales teams use it to analyze customer and revenue data.”

Businesses survive and thrive on data. The amount of data available to businesses today is impressive. To keep organizations on a successful path, analysts need to provide the key insights needed to make important decisions.

Here’s where Tableau comes in.

Tableau takes business intelligence to the next level, making it fast and efficient to analyze large amounts of data and create beautiful, presentation-ready visualizations that generate insights.

Data is the lifeblood of modern teams. Being able to quickly answer ad hoc questions and integrate data analysis into your day-to-day decision-making will make you an MVP. Though not all data analysts use Tableau, they do need some way to quickly create data visualizations.

Tableau is the data viz tool of choice.

Tableau is so popular in part because it is easy and fast to learn. In Iun Chen’s Intro to Data Analytics course, students learn the life-changing basics of Tableau in an afternoon. Aspiring analysts come to understand the power of data and the impact their numbers can have. As more data becomes available, there are more opportunities for data to be misused, a risk that every data scientist soon realizes. To quote the Nobel laureate and economist Ronald Coase, “If you torture the data long enough, it will confess.”

The ethics of data form the foundation of Chen’s syllabus so pitfalls are avoided from the start. “Overanalyzing and manipulating data too deeply can always give you the information you want,” says Chen. “Unfortunately, this is all too common in professional settings, though it’s usually unintentional.”

Tableau is a powerful tool.

Business insights are only as good as the data behind them, and the best data analysts understand that the human choices they make matter.

“Data is the perfect example of garbage in, garbage out,” says Srivastava, who defines good data as data that is ethically collected, complete, objective, and thoroughly analyzed. ”The double-edged sword of using powerful data analysis and visualization tools is that beautiful charts can create a false precision and obfuscate data integrity issues.”

To delve deeper into this topic, Chen recommends How Charts Lie, by Alberto Cairo, an exploration of how data can be altered:

“This book details how the use of data and data visualizations in journalism can be distorted and misleading, without the audience even realizing it, due to the urgency to present findings in a timely manner to the public.”

Want to learn more about Iun?
https://www.linkedin.com/in/iunchen 

Want to learn more about Vish? https://www.linkedin.com/in/vishrutps

7 Tips to Learn Tableau Fast

By

Featuring Insights From Iun Chen & Vish Srivastava

Read: 2 Minutes

Let’s get it straight: How difficult is it to learn Tableau for a complete beginner? Are there shortcuts to learning Tableau? Any tips, tricks, or time-saving work-arounds? Thankfully, the answer is yes. Try these top tips, approved by our expert instructors, and start data viz now.

“It’s a little overwhelming at first but as soon as you understand the basics, like what are dimensions and measures, everything falls into place pretty quickly,” says Vish Srivastava, product leader at Evidation Health and GA instructor.

“In essence, you need to understand two things: The basics on how data works — for example, what are common formats of data and what is a primary key? And a basic understanding of data visualization in a business setting. Can you answer the question: When is a time series vs. a pie chart valuable for decision making?”

But can you really learn the basics of Tableau in an afternoon?

“The best way to learn is to download a sample dataset and dive right in and start creating data visualizations. To keep going from there, check out various portfolios online to get inspiration, and try to build those.”

According to Iun Chen, who conducts internal Tableau training at LinkedIn, Tableau is easy to learn, but hard to master.

“The basic concepts of charting and color theory are easy to pick up and can take just a few weeks. However, if you are looking to be a subject matter expert, this can take years to perfect,” she says. 

Chen preps students in her Intro to Data Analytics course to achieve close-to-mastery in these key areas.

  1. Can they quickly prep and analyze large volumes of data?
  2. Identify key information and determine the best visual method to present them?
  3. Take business questions and determine which visualizations to use?
  4. Translate raw datasets to storylines with a beginning, middle, and end? 
  5. Format charts, graphs, titles, text, and images for a polished deliverable? 
  6. Articulate best practices on design and visualization techniques?
  7. Provide feedback on ineffective visualizations and how to improve them?

    This checklist is the closest thing to a Tableau cheat sheet you’ll find. Prioritize these skills, and you’ll waste no time learning Tableau. Now that you know what you need to succeed, you can choose whether to take our Data Analytics course fast or slow. Learn Tableau — along with data analytics tools SQL and Excel — in a 1-week accelerated format, or over 10 weeks in the evening.

Chen sums it up perfectly: “As long as you are actively learning, applying your learnings, and ensuring innovation of your work, you will be a data visualization expert in no time.”

Want to learn more about Iun?
https://www.linkedin.com/in/iunchen 

Want to learn more about Vish? https://www.linkedin.com/in/vishrutps

Top 3 Reasons To Learn Tableau

By

Featuring Insights From GA instructor Candace Pereira-Roberts

Read: 2 Minutes

Do you communicate data? Do you want to create more effective data visualizations? Tableau is the data analytics tool you’re looking for. Here are the top three reasons why you should learn how to use Tableau, the popular data viz software focused on business intelligence. Read on for the advantages of being a Tableau professional.

#1 Tableau Is Easy

Data can be complicated. Tableau makes it easy. Tableau is a data visualization tool that takes data and presents it in a user-friendly format of charts and graphs. And here’s the rub: There is no code writing required. You’ll easily master the end-to-end cycle of data analytics.


Need to showcase trends or surface findings? Tableau will make you an expert. Proficiency in business intelligence is a transferable skill that is quickly becoming the lifeblood of organizations. 

“I see students who are new to analytics learn Tableau desktop and be able to develop Tableau worksheets, interactive dashboards, and story points in a couple of weeks — essentially a complete data analysis project,” says Candace Pereira-Roberts, FinServ data engineer and one of our Data Analytics course instructors. She adds, “I like to share knowledge and watch people grow. I learn from my students as well.” 

 #2 Tableau Is Tremendously Useful

Would you rather tell visual stories with data? Or present the same old boring reports and tables? Is that even a question?

“Anyone who works in data should learn tools that help tell data stories with quality visual analytics.” Full stop.

The smart data analyst, data scientist, and data engineer were quick to adopt and use Tableau tool by tool, and it has given those roles a key competitive advantage in the recent data-related hiring frenzy. But their secret is out. And the advantages go beyond the usual tech roles. Having a working knowledge of data, and specifically knowing how to use Tableau, can help many more tech professionals become more attractive to recruiters and hiring managers.

Plus, it has a built-in career boost. Tableau’s visualizations are so elegant, you’ll be confident presenting the business intelligence and actionable insights to key stakeholders. Improving your presentation skills is par for the course.

#3 Tableau Data Analysts Are in Demand

As more and more businesses discover the value of data, the demand for analysts is growing. One advantage of Tableau is that it is so visually pleasing and easy for busy executives — and even the tech-averse — to use and understand. Tableau presents complicated and sophisticated data in a simple visualization format. In other words, CEOs love it.

Think of Tableau as your secret weapon. Once you learn it, you can easily surface critical information to stakeholders in a visually compelling format. That will make you a rockstar in any organization. 

“Tableau helps organizations leverage business intelligence to become more data-driven in their decision-making process.” Pereira-Roberts says. She recommends participating in Makeover Monday to take your skills to an even higher level. 

Take Our Free 2-Hour Data Visualization Class

Want to learn more about Candace? Check out her thoughts on how to become a business intelligence analyst, or connect with her on LinkedIn.

What Is Data Visualization?

By

An Interview With Iun Chen

Read: 4 Minutes

Data is big, and it’s getting bigger. How do you parse and understand data when the sheer amount of information can be overwhelming? The answer is data visualization. Using concepts of design theory like elements of color and layout, the discipline of data visualization, or data viz, is essentially the graphic representation of data. We called on one of our data viz experts, Iun Chen, to break it down further. 

Let’s start with an introduction and how you came to the world of data viz.

IC: I’m Iun (pronounced ‘yoon’), and I work in the data analytics space focusing on business intelligence tools and building scalable resources for LinkedIn. I also teach the 10-week Intro to Data Analytics course for GA, which includes the professional skills of SQL, Tableau, and Excel.

In college, I was a business major with a specialization in marketing and advertising. I became more interested in how the ad business model worked behind the scenes and in how software and systems worked. As a result, I worked at many major media companies in a quantitative capacity — revenue planning, ad pricing, finance, ad sales strategy. That led me into a formalized analytics route.

How do you define data visualization?

IC: Data visualization is the idea of communicating information graphically. It’s the science of information design, in which you take massive amounts of data in whatever format it comes in and use it to surface high-level insights and findings in a visually compelling way so audiences can easily understand the main points.

How does data visualization differ from data analytics?

IC: Data analytics is the process of cleaning, prepping, analyzing, and presenting data. Data visualization is part of the presenting data step and is defined as the act of visually organizing data through the use of charts, graphs, and dashboards. Concepts of data visualization are closely aligned with concepts of design theory: color, font, scale, layout, organization.

Why is data viz important?

IC: Data visualization is easy to learn but hard to master. In my classes, I heavily emphasize the design element of data visualization. It’s easy to whip together a quick bar or pie chart, but is it the best way to communicate the point you are trying to make? The goal of collecting mass amounts of data is to be able to quickly translate it into insights that can help make smart business decisions. The final form of this translation is often a chart or graph, which is why the ability to design and visualize these mass amounts of data grows as we collect more of it.

What is a data narrative?

IC: People think in stories and narratives, not in black and white figures. Just like you would share a story with a friend using a beginning, middle, and endpoint, you would do the same when sharing details about data analysis. Here’s a simple example.

  1. Beginning: Sales are down year-over-year; identify the symptoms.
  2. Middle: Furniture sales — our largest segment — are doing poorly in the last six months; conduct the analysis to investigate reasons and uncover root causes.
  3. End: Review retail store reports and conduct manufacturer visits; recommend next steps.

The key point to any data narrative is that it should present a compelling business case and surface unrealized insights to the audience. The business challenges, rationale, and next steps should be clearly presented, and people in the room should be able to walk away and know what to action on. 

Which tech roles use data visualization?

Data visualization — like data analytics — is a skill set that can be applied to any job. But if you are looking for a job that has data visualization skills as part of the function and responsibilities, look for roles like business analyst, data analyst, business intelligence analyst, data scientist, and data engineer. Keep in mind that the formal skill of data visualization is still relatively new, so depending on the maturity of the company, those functions may not be fully established yet. However, with the increase of data in the world, there’s a growing need for experts who understand data visualization techniques more and more.           

Check out this Medium post which details how Spotify’s business has evolved with the creation of their data visualization roles.

What’s the future of data visualization?

As we continue to collect more and more data, the need for people with the skills to analyze and present data becomes ever-growing and critical in the workplace environment. More companies will need to generate insights quickly to keep up with advances and competition in their respective industries. The skill of data visualization will become more and more attractive as teams and organizations seek to translate their data into insights more efficiently and effectively. The ability to work with data is increasingly critical to the success of any company in any job function. 

Iun Chen’s Recommended Data Viz Reading List

FlowingData

StorytellingWithData

InformationIsBeautiful

Tableau Public Gallery

New York Times Data Journalism

The WSJ Guide to Information Graphics

Storytelling with Data: A Data Visualization Guide for Business Professionals 

Good Charts: The HBR Guide to Making Smarter, More Persuasive Data Visualizations

Edward Tufte’s The Visual Display of Quantitative Information

Want to learn more about Iun?
https://www.linkedin.com/in/iunchen

Tableau vs. Power BI

By

Featuring Insights From Matt Brems

Read: 2 Minutes

Tableau and Power BI are powerful tools for business intelligence, with capabilities to take loads of big data and create elegant visualizations that convey key insights to stakeholders in easily digestible presentations. Both help organizations leverage business intelligence to become more data-driven in their decision-making process. So which tool is better? We asked a few industry experts their thoughts on the data analysis tools Tableau and Power BI. Here’s what they had to say.

Candace Pereira-Roberts, Data Engineer & GA Data Analytics Instructor

“Anyone who works in data should learn tools that help tell data stories with quality visualizations. Tableau is a wonderful tool for the technical and nontechnical to build these visualizations. I love how we teach the Tableau unit in the Data Analytics bootcamp. I see students who are new to analytics learn Tableau desktop and be able to develop Tableau worksheets, dashboards, and story points in a couple of weeks to do a complete analysis project.”

Iun Chen, GA Instructor & Data Analyst at LinkedIn 

“In my professional capacity, I lead data visualization workshops to share best practices on charting and design theory, with a focus on Tableau. But with the growth of big data analytics, there are more players in the data viz space. Looker. Qlik, Domo, and Microstrategy are a few with out-of-the-box solutions. Check out other marketplace BI and analytics leaders and their reviews at Gartner.

Alternatively, if you are up for the challenge you can start from scratch and build out completely customized solutions through coding packages, such as with Python plotting libraries Matplotlib, Pandas, and Seaborn.”

Matt Brems, GA Instructor & Data Consultant at BetaVector 

“Most data analyst roles will expect some experience with data visualization. They may prefer your visualization experience be tied to a certain tool like Tableau or Power BI or simply want you to have experience designing graphics or dashboards. As with any platform, the human element is key. A good data analyst is curious and detail-oriented. Diving into the data and spotting anomalies or identifying patterns requires curiosity. Looking at large datasets for long periods of time can invite mistakes, so being detail-oriented ensures you’re interpreting the data correctly.” 

Vish Srivastava, GA Instructor & Product Leader at Evidation Health

 “Most teams I’ve seen are not comparing Tableau and Power BI. Instead, it’s more about whether to adopt a business intelligence tool at all, or whether to use Tableau or Power BI in place of Excel. Tableau is a great option when you need to quickly create data visualizations.Tableau is incredibly powerful because it’s designed for nontechnical users, meaning business users can set up and tweak dashboards and charts without the support of engineering or data science teams.”

When it comes to research, the most common data analytics tool is SQL — no surprise there. But once you get into more niche industries, that can vary, says Brems.

“In academia, R is probably the most prevalent data analysis tool, though Python is quickly gaining popularity. SAS and Stata are often used in specific industries, though their popularity is diminishing. (R and Python are open source tools, which means, among other things, that they are free.)”

Want to learn more about Candace?
https://www.coursereport.com/blog/how-to-become-a-business-intelligence-analyst
https://generalassemb.ly/instructors/candace-roberts/13840
www.linkedin.com/in/candaceproberts

Want to learn more about Iun?
https://www.linkedin.com/in/iunchen 

Want to learn more about Matt?
https://betavector.com/
https://www.linkedin.com/in/matthewbrems

Want to learn more about Vish?
 https://www.linkedin.com/in/vishrutps

5 Ways to Inspire Your Design Teams

By

2018 99u Conference General Assembly

Tyler Hartrich, faculty lead for General Assembly’s User Experience Design Immersive course, leads a session at the 2018 99u Conference. Photos by Craig Samoviski.

As design educators, we at General Assembly prepare students for their careers — but how can we ensure designers continue to grow their skills beyond the classroom? Industry-leading work emerges from teams that persistently enrich themselves by fostering new skill sets and perspectives. But between deadlines, client fire drills, and day-to-day trivialities, a focus on growth can often be put on the back burner. In the long-term, this can result in uninspired designers who don’t grow to their full potential, and teams that opt for the easy way out instead of taking on risks, challenges, and explorations that drive innovation.

When Adobe approached General Assembly about leading a session at the 99u Conference — an annual gathering for creative professionals to share ideas and get inspired to help shape the future of the industry — we knew it would be a great opportunity to guide leaders in creating natural spaces for learning within their teams and workflows.

In our sold-out session “Onboard, Engage, Energize: Tactics for Inspiring a Crack Design Team,” Tyler Hartrich, faculty lead of GA’s full-time User Experience Design Immersive course, and Adi Hanash, GA’s former head of Advanced Skills Academies, shared insights on how directors and managers can structure spaces for learning within their teams, and encourage new approaches to problem-solving. The presentation was developed in collaboration with Senior Instructional Designer Eric Newman and me, GA’s director of product design.

At the event, we outlined the following five ways leaders can encourage their teams (and themselves) to keep learning and improving throughout their careers, including an exercise to spur creativity, reflection, and action. Read on to learn more, and find out how you can perform the exercise with your own team.

Continue reading

Demonstrating the ROI of Learning & Development

By

L&D-ROI

Demonstrating return on investment is much easier in some parts of the business than in others. In business development, for example, it’s much easier to prove that allocating additional sales resources or tools can directly lead to an increase in quantifiable revenue, which is then factored into a clean-cut ROI formula.

Continue reading

How Can UX Design Make Sense of Big Data?

By

ux-data-blog-picjumbo

Big data is just what it sounds like; data so big that it’s not easily processed through conventional methods. However, once this large data set is eventually distilled down, user experience can play a huge role in making sense of the reports and leading the charge for user-centered solutions.

User experience (UX) is the bridge between big data analytics and the end user. The richness of big data being collected by all types of companies has unleashed a treasure trove of information for user experience designers. UX designers can create more robust solutions for users by analyzing these enormous data sets.

Continue reading

The Best Topical Data Visualizations of 2015 (So Far)

By

Data-Visualization

Data visualization is a form of visual communication where data is presented in a pictorial or graphical format. By presenting complex data sets in a visual way, people can comprehend and analyze the information set faster and more clearly.

Continue reading