Spark Data Science Data Analytics General Assembly

By Joseph Kambourakis

Apache Spark is an open-source framework used for large-scale data processing. The framework is made up of many components, including four programming APIs and four major libraries. Since Spark’s release in 2014, it has become one of Apache’s fastest growing and most widely used projects of all time.

Spark uses an in-memory processing paradigm to speed up computation and run programs 10 to 100 times faster than other big data technologies like Hadoop MapReduce. According to the 2016 Apache Spark Survey, more than 900 companies, including IBM, Google, Netflix, Amazon, Microsoft, Intel, and Yahoo, use Spark in production for data processing and querying.

Apache Spark is important to the big data field because it represents the next generation of big data processing engines and is a natural successor to MapReduce. One of Spark’s advantages is that its use of four programming APIs — Scala, Python, R, and Java 8 — allows the user flexibility to work in the language of their choice. This makes the tool much more accessible to a wide range of programmers with different capabilities. Spark also has great flexibility in its ability to read all types of data from various locations such as Hadoop Distributed File Storage (HDFS), Amazon’s web-based Simple Storage Service (S3), or even the local filesystem.

Production-Ready and Scalable

Spark’s greatest advantage is that it maximizes the capabilities of data science’s most expensive resource: the data scientist. Computers and programs have become so fast, that we are no longer limited by what they can do as much as we are limited by human productivity. By providing a flexible language platform and having concise syntax, the data scientist can write more programs, iterate through their programs, and have them run much quicker. The code is production-ready and scalable, so there’s no need to hand off code requirements to a development team for changes.

It takes only a few minutes to write a word-count program in Spark, but would take much longer to write the same program in Java. Because the Spark code is so much shorter, there’s less of a need to debug or use version control tools.

Spark’s concise syntax can best be illustrated with the following examples. The Spark code is only four lines compared with almost 58 for Java.

Java vs. Spark

Faster Processing

Spark utilizes in-memory processing to speed up applications. The older big data frameworks, such as Hadoop, use many intermediate disc reads and writes to accomplish the same task. For small jobs on several gigabytes of data, this difference is not as pronounced, but for machine learning applications and more complex tasks such as natural language processing, the difference can be tremendous. Logistic regression, a technique taught in all of General Assembly’s full- and part-time data science courses, can be sped up over 100x.

Spark has four key libraries that also make it much more accessible and provide a wider set of tools for people to use. Spark SQL is ideal for leveraging SQL skills or work with data frames; Spark Streaming has functions for data processing, useful if you need to process data in near real time; and GraphX has pre-written algorithms that are useful if you have graph data or need to do graph processing. The library most useful to students in our Data Science Immersive, though, is the Spark MLlib machine learning library, which has prewritten distributed machine learning algorithms for use on data frames.

Spark at General Assembly

At GA, we teach both the concepts and the tools of data science. Because hiring managers from marketing, technology, and biotech companies, as well as guest speakers like company founders and entrepreneurs, regularly talk about using Spark, we’ve incorporated it into the curriculum to ensure students are fluent in the field’s most relevant skills. I teach Spark as part of our Data Science Immersive (DSI) course in Boston, and I previously taught two Spark courses for Cloudera and IBM. Spark is a great tool to teach because the general curriculum focuses mostly on Python, and Spark has a Python API/library called PySpark.

When we teach Spark in DSI, we cover resilient distributed data sets, directed acyclic graphs, closures, lazy execution, and reading JavaScript Object Notation (JSON), a common big data file format.

Meet Our Expert

Joseph Kambourakis has over 10 years of teaching experience and over five years of experience teaching data science and analytics. He has taught in more than a dozen countries and has been featured in Japanese and Saudi Arabian press. He holds a bachelor’s degree in electrical and computer engineering from Worcester Polytechnic Institute and an MBA with a focus in analytics from Bentley University. He is a passionate Arsenal FC supporter and competitive Magic: The Gathering player. He currently lives with his wife and daughter in Needham, Massachusetts.

"GA students come to class motivated to learn. Throughout the Data Science Immersive course, I keep them on their path by being patient and setting up ideas in a simple way, then letting them learn from hands-on lab work."

Joseph Kambourakis, Data Science Instructor, General Assembly Boston