python uses Tag Archives - General Assembly Blog

3 Major Uses for Python Programming

By

Python is a popular and versatile programming language. But what is Python used for? If you’re interested in learning Python or are in the process of learning how to code in Python, your efforts will be greatly rewarded as there’s so much you can do with it. In this article, we’ll explore the top three major uses for Python.

Before we dive into the uses, let’s briefly discuss why Python has so many uses in the first place. What characteristics does Python have that allow it to be so useful? Python is:

  • General-purpose: The language was designed to be “general purpose”, meaning it doesn’t have language constructs to force it into a specific application domain. Other programming languages that are general-purpose include (but are not limited to): C++, Go, Java, JavaScript, and Ruby. 
  • Readable: Python is a high-level programming language, meaning it has a higher level of abstraction from machine language and has a simple syntax and semantics (e.g., indentation instead of curly brackets to indicate blocks), which lends to its readability. 
  • Versatile: Python has a large standard library, meaning it comes equipped with a lot of specialized code to handle different tasks. For example, instead of writing your own Python code to read and write CSV files, you can use the csv module’s reader and writer objects. In addition, there are many open-source libraries and frameworks that provide additional value for Python programmers — especially those in machine learning, deep learning, application development, and game development — and scientific computing will find an ample supply of libraries and modules.

What is Python used for? There are so many different tasks that Python can accomplish. You can use it to build recommender systems, create cool charts and graphs, build restful APIs, program robots, conduct scientific computing, manipulate text data or extract text from images; the list goes on and on. 

The best way to think about uses for Python is through the most active and popular disciplines that rely on Python programming:

  1. Artificial intelligence and machine learning
  2. Data analysis and data visualization
  3. Web development

1. Artificial Intelligence and Machine Learning

What it is: Artificial Intelligence is a concept that’s more or less the idea of machines or computers that mimic human cognitive functions such as “learning” and “problem-solving.” Activities like driving a car, playing chess, and answering a question are all structured, logic-based things that humans can do that are being implemented by computers today. At the heart of this activity is machine learning, which is the process that a computer takes to learn the relationships between variables in data so well that it can predict future outcomes (usually on unseen data). If data is the input (“knowledge”), the machines understand the relationships between variables (“learning”) and it can predict what the next step is (“outcome”) — then you have machine learning. 

How Python is used: Artificial intelligence requires a lot of data, which in turn requires appropriate storage, pre-processing, and data modeling techniques to be implemented. Deep learning is the intermediary component; it’s the use of specialized models (neural networks) that can handle “big data” at scale. Python is a programming language of choice for the machine learning, deep learning, and artificial intelligence community due to it being a minimalistic and intuitive language with a significant number of libraries dedicated to machine learning activities, which reduces the time required to implement and get results. R is another popular language used by machine learning enthusiasts and practitioners, but Python tends to be more popular because of the number of machine learning and AI-related efforts coming from the tech community, which uses Python. For example, TensorFlow is Google’s AI platform and open-source software library used for machine learning and the creation of neural networks for AI purposes.

Helpful links: Machine Learning, Python Libraries for Machine Learning

2. Data Analysis and Data Visualization

What it is: Data analysis is the specialized practice of analyzing data, both big and small, for information and insights. Results of data analyses are often visualized, for the benefit of the recipient, and the tools and techniques used to communicate results visually requires the specialization that is known as data visualization. Data analysis and data visualization are not unique to any industry. It’s better to think of them as process-focused roles than industry-specific roles. After all, every company and industry has its own data to work with. What data analysis is not is the management of data from servers and storage, although some data analysts specialize in data management.  

How Python is used: Data analysis and data visualization are specialized roles that can implement Python in ways that are integral to the mission of each role. A data analyst will use Python for data wrangling and data transformation, which is converting data from its raw format to a usable, analyzable format. Then, using open-sourced libraries like Pandas, NumPy, and SciPy, data analysts can manipulate and analyze both numerical and categorical data. In order to visualize data locally, additional libraries such as Seaborn, matplotlib, ggplot, and bokeh, can be used. Some data visualization professionals prefer using Python over business intelligence platforms like PowerBI and Tableau because it’s free, easy to learn, and reduces the need to have to use additional software to create visualizations. 

Helpful links: Data Analysis in Python, Python Libraries for Data Visualization

3. Web Development 

What it is: Web development is a catch-all term for creating web applications and application programming interfaces (APIs) for the web. Web development is a highly specialized role that can be explained by the design pattern known as model, view, and controller (MVC). These terms represent the specialized layers of code of a web application or API. The model involves the code for an application’s dynamic data structure, the view involves the code that directly interacts with the user, and the controller is the code that handles user interactions and works to facilitate input going from the view to the model.

How Python is used: Python has several MVC frameworks that can be used for web application development straight out of the box, and this includes Django, turbogears, and web2py. While a web framework is not required for web development, it’s beneficial to use them as they greatly speed up the development progress. For beginners, learning Python’s syntax and the libraries needed for building a web application or API is a high level of effort, but the alternative would involve a much greater effort, as it would require the knowledge and correct use of multiple programming languages instead of Python.

Helpful links: Full Stack Python: Web Development, Web Frameworks for Python

Conclusion

We’ve explored the major uses for Python, which include machine learning and artificial intelligence, data analysis and data visualization, and web development. If you’re currently learning Python programming, then you’re off to a good start, especially if you’re considering pursuing work in any of the aforementioned areas. For those unsure how to start learning Python, I encourage you to read some of our other posts, which provide more details and tips on how to get started.

Explore Our Upcoming Coding Programs