Brenda Hali, Author at General Assembly Blog

Understanding the Difference Between Data Analytics and Data Science

By

Data analytics and data science are two key terms thrown around in the tech and business world. What do they mean, and what’s the difference between the two? Data analytics is concerned with performing statistical analysis on existing datasets to solve problems and find answers to current issues we don’t know the answers to. Data science focuses on creating actionable insights and predictions from raw and structured data, often in large quantities.

This article will discuss the critical differences between data analytics and data science. First, we’ll explain what big data is, followed by a little more information on each role: data analyst and data scientist.

What is Big Data?

Big data can often be challenging to comprehend. Big data is usually more extensive and more complex than other datasets and may contain multiple sources. Put simply, big data is too large to process and understand using traditional data processing methods. This is where data analysts and data scientists come in — their job is to interpret this data and present it to their company or organization.

The original definition of big data, prefaced by Gartner (2001) is as follows: “Big data is high-volume, high-velocity and/or high-variety information assets that demand cost-effective, innovative forms of information processing that enable enhanced insight, decision making, and process automation.”

The Three V’s of Big Data

To better understand big data, whether as a data analyst, scientist, or curious individual, we must apply the three V’s: Volume, Velocity, and Variety.

Volume

When it comes to an understanding of big data, the volume of this data matters significantly. Big data requires you to process an increased volume of unstructured data, e.g. Twitter feeds, sensor-enabled equipment, forum responses, or comments and reviews on webpages or mobile apps. This data can be difficult to comprehend; however, it’s crucial that there’s a lot of it in order to make valid claims. The volume of big data depends on the organization’s size and the questions that are being asked.

Velocity

In regards to big data, velocity is the speed at which data is received and then interpreted. Some pieces of software can do this automatically, depending on the complexity and structure of the data. However, this is not always possible, making the velocity much slower as it’s done manually by a data analyst or data scientist.

Variety

Finally, we have a variety. This refers to the different types of data that are available, both structured and unstructured. For example, data types may include audio, text, video, comments on forums, reviews, and other metadata. In the last few years, we’ve seen a rise in unstructured data (such as interviews, which then need to be transcribed), audio recordings, and video interviews.

Value & Veracity

Although the three V’s mentioned above are the go-to for big data, more recently, two new V’s have been introduced: value and veracity. For example, all data contains an intrinsic value, but this value cannot be understood until the data is understandable. Some data contains more intrinsic value than others, and this is determined by the data source and the truthfulness of the data, e.g. can you rely on the data source?

Big data is becoming more and more mainstream, especially for large tech companies (and others that deal in large quantities of data) to better understand their users and their products. For instance, companies such as Apple use big data to understand and map user experience and intentions, and to help create new products that customers will actually be interested in — solutions to problems that others don’t yet recognize as obstacles.

Data Analytics vs. Data Science

As mentioned previously, both data analytics and data science are somewhat similar and often confused. To eliminate this confusion and to better help you understand the difference, we’ve provided a brief description of each role below.

What does a data analyst do?

A data analyst’s job consists of sorting through data to provide visual and written reports to uncover insights in a dataset. These datasets could be on any topic, whether a crime, government funding, or within the sports performance industry. Often, many data scientists practice first as a data analyst, learning the ropes and better understanding data as a whole.

What does a data scientist do?

A data scientist’s role is to collect and analyze data to gather valuable insights, later sharing these with their organization or company. Similar to a data analyst, the role of a data scientist exists across many different industries.

Unlike data analysts who provide insights via representations of data, data scientists are more significantly involved by creating their own experiments, cleaning data, finding patterns, building algorithms, and finally, sharing their data and newly found insights with their team in an easy to understand process.

What is the difference between data analytics and data science?

This next section will explain several key differences between data analytics and data science to help you better understand each role in more detail.

1.   Data science is multidisciplinary

One of the main differences between data analytics and data science is that data science incorporates numerous disciplines, including data analytics, data engineering, machine learning, and software engineering, to name a few. In particular, data science relies heavily on machine learning and data analytics. Without traditional data analytics, whether performed by an analyst or a data scientist, it would be difficult and nearly impossible to understand big data.

Ultimately, a data scientist’s role is to understand and re-structure big data, identify patterns, and educate business leaders and decision-makers on their findings to adjust current practices for better, more effective results.

2.   The unknown vs. the known

A data scientist’s role is to predict future events or further data by analyzing past data patterns. On the other hand, a data analyst looks at current data and perspectives to better understand current events. This fundamental difference is paramount, and a critical distinction between the two sets of expertise. Essentially, data scientists focus on the future, and data analysts center their attention on the now.

3.   Hands-on machine learning experience

Data analysts are not expected or required to have hands-on machine learning experience. Similarly, those within this role are not likely to build statistical models or conduct advanced experiments to better understand big data.

Data scientists, on the other hand, are expected to have hands-on machine learning experience and are required to build their own statistical models and conduct their own experiments. As you can see, the roles are somewhat similar, but a data scientist’s role is more advanced and a step up from a data analyst. This is why many data scientists start out as data analysts.

4.   Addressing vs. formulating questions

Generally, data analysts are given questions to address by their business or organization. The request usually has to do with understanding a specific dataset to better benefit the business and their regular operations, e.g. cutting costs, increasing footfall, or understanding sales trends of distinct products or services.

Conversely, data scientists formulate these questions and provide solutions that will benefit the business. Usually, these questions are about events that haven’t happened yet; with greater focus on predicting the future as opposed to understanding current data and events.

5.   Multiple sources vs. single sources

Data analysts typically use and interpret data from a single source, such as a CRM system, while data scientists collect and gain insights from multiple data sources — sources that are often disconnected and more complex to understand. This is why processes such as machine learning and statistical models are used to better understand this big data.

6.   Visualization skills

Data analysts are not always required to possess business acumen or exceptional data visualization skills. Instead, their role is to interpret the data in an easy-to-understand fashion, not to implement changes to a business setting or real-world scenario. By comparison, data scientists are required to show business acumen and advanced data visualization skills, putting newly understood data to work in a business setting and contextualizing potential impacts on a business and its current decisions and processes.

Frequently Asked Questions

Can a data analyst become a data scientist?

Yes, data analysts can become data scientists. Many data scientists often start as data analysts, learning the big data world’s ropes and the various methods involved in interpreting and making sense of data. With this being said, an advanced degree is not necessary but may support you during the transition process.

Which is better for business: analytics or data science?

Business analytics is concerned with the analysis of data to make key business decisions, while data science uses statistics and various other methods to complement and inform business decisions. While there’s no correct answer, if you think you’d like to be more involved in a business decision, then a business analyst role is probably for you.

Data analyst vs. data scientist salary — which is better?

According to Glassdoor, the average salary for a data analyst ranges from $83,000 to $115,000, while data scientists earn, on average, upwards of $168,000 a year.

To conclude

Data analytics and data science have different roles within the same industry; however, they’re somewhat similar. As we’ve discussed, data analysts focus on sorting through current datasets to provide insights and visualizations in response to a business or organization’s question or current problem. On the other hand, data scientists formulate their questions as well as the subsequent answers and solutions that will benefit the business, focusing typically on events that have not yet happened.

Many data scientists often become data analysts first, helping them to better understand big data and the many processes involved in its analysis. Think of a data scientist as a more advanced data analyst — they ask questions, use machine-learning, build statistical models, and conduct experiments. However, both roles share the critical goal of a better understanding of big data.

Explore Data Workshops

How to Quickly get an Internship in Data Science

By

After studying statistics, probability, programming, algorithms, and data structures for long hours, putting all the knowledge in action is essential. An internship at a great company is a great way to practice your skills, but at the same time is one of the most difficult jobs. Especially with such vast competition.  

Nowadays, many other opportunities are branded as “internship experiences” but they’re not actually internships. A key distinction is as follows: if you’re asked to pay for an internship, then it’s not an internship. An internship is a free opportunity to work in a specific industry for a short period of time, usually shadowing an existing employee or team.

This article will provide you with five tips to help you secure your first data science internship. However, first we’ll discuss what exactly data science is and what the job entails.

What is data science?

Data science focuses on obtaining actionable insights from data, both raw and unstructured, often in large quantities. This big data is analyzed by data analysts as it’s so complex it cannot be understood by existing software or machines.

Ultimately, data science is concerned with providing solutions to problems we don’t yet know are problems or concerns. It’s essentially about looking into the future and finding fixes for things that may happen or might be implemented. On the other hand, a data analyst’s role is to investigate current data and how this impacts the now.

What is the role of a data scientist?

As a data science intern, you will be responsible for collecting, cleaning, and analyzing various datasets to gather valuable insights. Later, with the help of other data scientists, these insights will be shared with the company in an effort to contribute to business strategies or product development. Within the role of a data scientist, you will be expected to be independent in your work collecting and cleaning data, finding patterns, building algorithms, and even conducting your own experiments and sharing these with your team.

5 Tips to Finding Your First Data Science Internship

Now that you know what data science is and what a data science analyst does, you may be wondering how to get a data science internship. Here are five actionable tips to land your first data science internship, beginning with a more obvious one: acquiring the right skills.

1.   Acquire the right skills

As a data scientist, you’re expected to possess a variety of complex skills. Therefore, you should begin learning these now to set yourself aside from your competition and increase the likelihood of landing a data science internship.

In fact, regardless of your internship role, you should be actively learning new skills all of the time, preferably skills that are related to your industry (e.g. data science). There’s no set formula to acquire skills; there are numerous ways to get started, such as online data science courses (some of which are free), additional University modules, or conducting some data science work yourself, perhaps in your free time.

The more relevant data science skills you have, the more appealing you’ll be to employees looking for a data science intern. So, start learning now and distinguish yourself from your competition; you won’t regret it.

2.   Customize each data science application

A common problem many graduate students make when applying for internships online is bulk-applying and using the same CV and cover letter for each application. This is a lengthy and tedious process, and rarely pays dividends.

Instead, students should customize each data science application to each company or organization that they’re applying for. Not all data science jobs are the same — their requirements are somewhat different, both in the industry and the company’s goals and beliefs. To increase your likelihood of landing a data science internship, you need to be genuinely interested in the company you are applying for, and show this in your application. Be sure to read through their website, look at their previous work, initiatives, goals, and beliefs. And finally, make sure that the companies you are applying for are places you actually want to work at, or else the sincerity of your application may be cast in a negative light, even if you don’t realize this.

3.   Create a portfolio

To stand out in such a saturated market, it’s essential to create your very own portfolio. Ideally, your portfolio should consist of one or several of your own projects where you collect your own data. It’s good to indicate you have the experience on paper, but showing this to potential employers first-hand shows that you’re willing to go above and beyond, and that you truly do understand datasets and other data scientist tasks.

Your portfolio project(s) should be demonstrable, covering all typical steps of machine learning and general data science tasks such as collecting and cleaning data, looking for outliers, building models, evaluating models, and drawing conclusions based on your data and findings.  Furthermore, go ahead and create a short brief to explain your project(s), to include as a preface to your portfolio.

4.   Practicing for interviews is crucial

While your application may land you an interview, your interview is the penultimate deciding factor as to whether or not you get the data science internship. Therefore, it’s essential to prepare the best you can. 

There are several things you can do to prepare:

●  Research what to expect in the interview.

●  Know your project and portfolio like the back of your hand.

●  Research common interview questions and company information.

●  Practice interview questions and scenarios with a friend or family member. 

Let’s break down each of these points further.

Research what to expect in the interview.

Every interview is different, but you can research roughly what to expect. For example, you could educate yourself on the company’s latest policies and events, ongoing initiatives, or their plans for the coming months. Taking the time to research the company will come through in your interview and show the interviewer that you’re dedicated and willing to do the work.

Know your project and portfolio like the back of your hand.

To show your competence and expertise, it’s essential to have a deep and thorough understanding of your project and portfolio. You’ll need to be able to answer any questions your interviewer asks, and provide detailed and knowledgeable answers.

Prior to the interview, familiarize yourself with your project, revisiting past data, experiments, and conclusions. The more you know, the better equipped you’ll be.

Research common interview questions and company information.

Most data science internship interviews follow a similar series of questions. Before your interview, research these, create a list of the most popular and difficult questions, and prepare your answers for each question. Even if these exact questions may not come up, similar ones are likely to. Preparing thoughtful answers in advance provides you with the best opportunity to express professional and knowledgeable answers that are sure to impress your interviewers.

This leads us to our next point: practicing these questions.

Practice interview questions and scenarios with a friend or family member.

Once you’ve researched a variety of different questions, try answering these with a friend or family member, ideally in a similar environment as the interview. Practicing your answers to these questions will help you be more confident and less nervous. 

Be sure to go over the more difficult questions, just in case they come up in your actual data science internship interview.

Ask whomever is interviewing you (the friend or family member, for example) to ask some of their own questions, too, catching you off guard and forcing you to think on your feet. This too helps you get ready for the interview, since this is likely to happen regardless of how well you prepare.

5.   Don’t be afraid to ask for feedback

You’re not going to get every data science internship you apply for. Even if you did, you wouldn’t be able to take them all. Therefore, we recommend asking for feedback on your interview and application in general.

If you didn’t land the internship the first time, you can use this feedback and perhaps re-apply at a future date. Most organizations and companies will be happy to offer feedback unless they have policies in place preventing them. With clear feedback, you’ll be able to work on potential weaknesses in your application and interview and identify areas of improvement for next time.

Over time, after embracing and implementing this feedback, you’ll become more confident and better suited to the interview environment — a skill that will undoubtedly help you out later in life.

Frequently Asked Questions

What do data analyst interns do?

Data analyst interns are responsible for collecting and analyzing data and creating visualizations of this data, such as written reports, graphs, and presentations.

How do I get a data science job with no experience?

Getting a data science job with no experience will be very difficult. Therefore, we recommend obtaining a degree in a relevant subject (e.g. computer science) if possible and creating your own portfolio to showcase your expertise to potential employers.

What does a data science intern do?

Data science interns perform very similar roles and tasks to full-time data scientists. However, the main difference here is that interns often shadow or work with another data scientist, not alone. As an intern, you can expect to collect and clean data, create experiments, find patterns in data, build algorithms, and more.

To Conclude

Data science internships are few and far between, and landing one can be difficult. But it’s not impossible and the demand for these roles is slowly increasing as the field becomes more popular.

The role of a data scientist intern includes analyzing data, creating experiments, building algorithms, and utilizing machine learning, amongst a variety of other tasks. To successfully get a data science internship, you should begin acquiring the right skills now, customize each application, create your very own portfolio and project, practice for interviews, and don’t be afraid to ask for feedback on unsuccessful applications.

Best of luck to all those applying, and remember: preparation is key.

Explore Data Workshops